Academic Thesis

Basic information

Name Michiyoshi Nukaga
Belonging department
Occupation name
researchmap researcher code
researchmap agency

Title

Probing the Mechanism of Inactivation of the FOX-4 Cephamycinase by Avibactam. 

Bibliography Type

Joint Author

Author

 

OwnerRoles

 

Summary

Nukaga M, Papp-Wallace KM, Hoshino T, Lefurgy ST, Bethel CR, Barnes MD, Zeiser ET, Johnson JK, Bonomo RA.Ceftazidime-avibactam is a "second-generation" β-lactam-β-lactamase inhibitor combination that is effective against Enterobacteriaceae expressing class A extended-spectrum β-lactamases, class A carbapenemases, and/or class C cephalosporinases. Knowledge of the interactions of avibactam, a diazabicyclooctane with different β-lactamases, is required to anticipate future resistance threats. FOX family β-lactamases possess unique hydrolytic properties with a broadened substrate profile to include cephamycins, partly as a result of an isoleucine at position 346, instead of the conserved asparagine found in most AmpCs. Interestingly, a single amino acid substitution at N346 in the Citrobacter AmpC is implicated in resistance to the aztreonam-avibactam combination. In order to understand how diverse active-site topologies affect avibactam inhibition, we tested a panel of clinical Enterobacteriaceae isolates producing blaFOX using ceftazidime-avibactam, determined the biochemical parameters for inhibition using the FOX-4 variant, and probed the atomic structure of avibactam with FOX-4. Avibactam restored susceptibility to ceftazidime for most isolates producing blaFOX; two isolates, one expressing blaFOX-4 and the other producing blaFOX-5, displayed an MIC of 16 μg/ml for the combination. FOX-4 possessed a k2/K value of 1,800 ± 100 M-1 · s-1 and an off rate (koff) of 0.0013 ± 0.0003 s-1 Mass spectrometry showed that the FOX-4-avibactam complex did not undergo chemical modification for 24 h. Analysis of the crystal structure of FOX-4 with avibactam at a 1.5-Å resolution revealed a unique characteristic of this AmpC β-lactamase. Unlike in the Pseudomonas-derived cephalosporinase 1 (PDC-1)-avibactam crystal structure, interactions (e.g., hydrogen bonding) between avibactam and position I346 in FOX-4 are not evident. Furthermore, another residue is not observed to be close enough to compensate for the loss of these critical hydrogen-bonding interactions. This observation supports findings from the inhibition analysis of FOX-4; FOX-4 possessed the highest Kd (dissociation constant) value (1,600 nM) for avibactam compared to other AmpCs (7 to 660 nM). Medicinal chemists must consider the properties of extended-spectrum AmpCs, such as the FOX β-lactamases, for the design of future diazabicyclooctanes.

Magazine(name)

Antimicrob Agents Chemother. 2018 Apr 26;62(5). pii: e02371-17. doi: 10.1128/AAC.02371-17. Print 2018 May.

Publisher

 

Volume

 

Number Of Pages

 

StartingPage

 

EndingPage

 

Date of Issue

2018/04

Referee

 

Invited

 

Language

 

Thesis Type

 

International Journal

 

International Collaboration

 

ISSN

 

eISSN

 

DOI

 

NAID

 

Cinii Books Id

 

PMID

 

PMCID

 

URL

Format

 

Download

 

J-GLOBAL ID

 

arXiv ID

 

ORCID Put Code

 

DBLP ID

 

Subject1

 

Subject2

 

Subject3

 

Major Achivement