Academic Thesis

Basic information

Name Toru Yamazaki
Belonging department
Occupation name
researchmap researcher code
researchmap agency

Title

A simple and sensitive method for the determination of fibric acids in the liver by liquid chromatography 

Bibliography Type

Joint Author

Author

 

OwnerRoles

 

Summary

Fibrates are used in biochemical and pharmacological studies as bioactive tools. Nevertheless, most studies have lacked information concerning the concentrations of fibric acids working inside tissues because a simple and sensitive method is not available for their quantitation. This study aimed to develop a simple and sensitive bioanalytical method for the quantitation of clofibric, bezafibric and fenofibric acids in samples of very small portions of tissues. Fibric acids were extracted into n-hexane-ethyl acetate from tissue homogenates (10 mg of liver, kidney or muscle) or serum (100 µL) and were derivatized with 4-bromomethyl-6,7-dimethoxycoumarin, followed by HPLC with fluorescence detection. These compounds were separated isocratically on a reversed phase with acetonitrile-water. Standard analytical curves were linear over the concentration range of 0.2-20 nmol/10 mg of liver. Precision and accuracy were within acceptable limits. Recovery from liver homogenates ranged from 93.03 to 112.29%. This method enabled the quantitation of fibric acids in 10 mg of liver from rats treated with clofibric acid, bezafibric acid or fenofibrate. From these analytical data, it became clear that there was no large difference in ratio of acyl-CoA oxidase 1 (Acox1) mRNA level to fibric acid content in the liver among the three fibric acids, suggesting that these three fibric acids have similar potency to increase expression of the Acox1 gene, which is a target of peroxisome proliferator-activated receptor α. Thus, the proposed method is a simple, sensitive and reliable tool for the quantitation of fibric acids working in vivo inside livers.
37(1):105-12.

Magazine(name)

Biol Pharm Bull 

Publisher

 

Volume

 

Number Of Pages

 

StartingPage

 

EndingPage

 

Date of Issue

2014/01

Referee

 

Invited

 

Language

 

Thesis Type

 

International Journal

 

International Collaboration

 

ISSN

 

eISSN

 

DOI

 

NAID

 

Cinii Books Id

 

PMID

 

PMCID

 

URL

Format

 

Download

 

J-GLOBAL ID

 

arXiv ID

 

ORCID Put Code

 

DBLP ID

 

Subject1

 

Subject2

 

Subject3

 

Major Achivement