教員名 : 小松 悟朗
|
授業科目名
Data Science
学年
1年
単位数
2.00単位
実務経験の有無
開講クォーター
セメスタ指定なし
担当教員
小松 悟朗
授業形態
授業で主に使用する言語
English
授業方法区分
開講キャンパス
紀尾井町キャンパス
授業の到達目標及びテーマ
This course provides an introduction to the advanced statistical methods in Data Science, Machine Learning, and Econometrics.
Students will also have hands-on experiences on programming languages such as Python &/or R, to apply those methodologies to real world data. No programming skills are required. We also welcome those who are interested in programming skills and data scientists. *It is highly recommended that students have already taken “Statistics” offered by GSIA. *The class materials and schedule are subject to change depending on students’ statistical skills and research topics. 授業の概要
Course Title: Data Science
Class Format: Lecture Content: After we review some basic concepts in probability and statistics, we will learn about the basic toolkits in machine learning and Econometrics, using Python and/or R programming languages. Students must bring their own laptop computers for the in-class programming exercises. Keyword: Data Science, Machine Learning, Supervised Learning, Regression Analysis, Causal Inference, Unsupervised Learning, Clustering, Python, R, Data Scientist Week 1—Preliminaries 1 Statistics Review and Introduction to R (1) 2 Statistics Review and Introduction to R (2) Week 2—Causality and Measurement 3 Causality 4 Measurement and Clustering Week 3—Regression Analysis (1) 5 Simple Regression Model 6 Multiple Regression Analysis: Estimation Week 4—Regression Analysis (2) 7 Multiple Regression Analysis: Inference and OLS Asymptotics 8 Multiple Regression Analysis: Further Issues and Qualitative Regressors Week 5—Causal Inference and Program Evaluation (1) 9 Difference-in-Differences 10 Panel Data Week 6—Causal Inference and Program Evaluation (2) 11 Instrumental Variables 12 Regression Discontinuity Design, Propensity Score Matching Week 7—Wrap-up 13 Wrap-up 授業計画
1回
1 Statistics Review and Introduction to R (1)
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
2回
2 Statistics Review and Introduction to R (2)
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
3回
3 Causality
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
4回
4 Measurement and Clustering
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
5回
5 Simple Regression Model
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
6回
6 Multiple Regression Analysis: Estimation
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
7回目
7 Multiple Regression Analysis: Inference and OLS Asymptotics
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
8回
8 Multiple Regression Analysis: Further Issues and Qualitative Regressors
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
9回
9 Difference-in-Differences
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
10回
10 Panel Data
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
11回
11 Instrumental Variables
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
12回
12 Regression Discontinuity Design, Propensity Score Matching
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
13回
13 Wrap-up
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
14回
事前学習
事後学習
15回
事前学習
事後学習
16回
事前学習
事後学習
17回
事前学習
事後学習
18回
事前学習
事後学習
19回
事前学習
事後学習
20回
事前学習
事後学習
21回
事前学習
事後学習
22回
事前学習
事後学習
23回目
事前学習
事後学習
24回
事前学習
事後学習
25回
事前学習
事後学習
26回
事前学習
事後学習
試験及び成績評価
Homework Quizzes: 50%
Final Project: 50% 課題(試験やレポート等)に対するフィードバック
To be provided when necessary/requested
講義で使用するテキスト(書名・著者・出版社・ISBN・備考)
To be provided
-
-
-
-
参考文献・推薦図書
Quantitative Social Science: An Introduction
Kosuke Imai Princeton University Press. ISBN: 978-0691175461 2017 Introductory Econometrics: A Modern Approach (7th Edition) Wooldridge South-Western Pub. ISBN: 978-1337558860 2019 Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python, 2nd ed. Peter Bruce, et al. Oreilly & Associates Inc. 978-1492072942 2020 研究室
オフィスアワー
科目ナンバリング
学位授与方針との関連
関連ページ
|