シラバス情報

授業科目名
Data Science
学年
1年
単位数
2.00単位
実務経験の有無
開講クォーター
セメスタ指定なし
担当教員
小松 悟朗
授業形態
授業で主に使用する言語
English
授業方法区分
開講キャンパス
紀尾井町キャンパス
授業の到達目標及びテーマ
This course provides an introduction to the advanced statistical methods in Data Science, Machine Learning, and Econometrics.

Students will also have hands-on experiences on programming languages such as Python &/or R, to apply those methodologies to real world data.

No programming skills are required. We also welcome those who are interested in programming skills and data scientists.

*It is highly recommended that students have already taken “Statistics” offered by GSIA.
*The class materials and schedule are subject to change depending on students’ statistical skills and research topics.
授業の概要
Course Title: Data Science

Class Format: Lecture

Content:
After we review some basic concepts in probability and statistics, we will learn about the basic toolkits in machine learning and Econometrics, using Python and/or R programming languages.

Students must bring their own laptop computers for the in-class programming exercises.

Keyword:
Data Science, Machine Learning, Supervised Learning, Regression Analysis, Causal Inference, Unsupervised Learning, Clustering, Python, R, Data Scientist


Week 1—Preliminaries
1 Statistics Review and Introduction to R (1)
2 Statistics Review and Introduction to R (2)

Week 2—Causality and Measurement
3 Causality
4 Measurement and Clustering

Week 3—Regression Analysis (1)
5 Simple Regression Model
6 Multiple Regression Analysis: Estimation

Week 4—Regression Analysis (2)
7 Multiple Regression Analysis: Inference and OLS Asymptotics
8 Multiple Regression Analysis: Further Issues and Qualitative Regressors

Week 5—Causal Inference and Program Evaluation (1)
9 Difference-in-Differences
10 Panel Data

Week 6—Causal Inference and Program Evaluation (2)
11 Instrumental Variables
12 Regression Discontinuity Design, Propensity Score Matching

Week 7—Wrap-up
13 Wrap-up

授業計画
1回
1 Statistics Review and Introduction to R (1)
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes

2回
2 Statistics Review and Introduction to R (2)
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes

3回
3 Causality
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes

4回
4 Measurement and Clustering
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes

5回
5 Simple Regression Model
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes

6回
6 Multiple Regression Analysis: Estimation
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes

7回目
7 Multiple Regression Analysis: Inference and OLS Asymptotics
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes

8回
8 Multiple Regression Analysis: Further Issues and Qualitative Regressors
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes

9回
9 Difference-in-Differences
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes

10回
10 Panel Data
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes

11回
11 Instrumental Variables
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes

12回
12 Regression Discontinuity Design, Propensity Score Matching
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes

13回
13 Wrap-up
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes

14回
事前学習
事後学習

15回
事前学習
事後学習

16回
事前学習
事後学習

17回
事前学習
事後学習

18回
事前学習
事後学習

19回
事前学習
事後学習

20回
事前学習
事後学習

21回
事前学習
事後学習

22回
事前学習
事後学習

23回目
事前学習
事後学習

24回
事前学習
事後学習

25回
事前学習
事後学習

26回
事前学習
事後学習

試験及び成績評価
Homework Quizzes: 50%
Final Project: 50%
課題(試験やレポート等)に対するフィードバック
To be provided when necessary/requested
講義で使用するテキスト(書名・著者・出版社・ISBN・備考)
To be provided
-
-
-
-
参考文献・推薦図書
Quantitative Social Science: An Introduction
Kosuke Imai
Princeton University Press.
ISBN: 978-0691175461
2017

Introductory Econometrics: A Modern Approach (7th Edition)
Wooldridge
South-Western Pub.
ISBN: 978-1337558860
2019

Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python, 2nd ed.
Peter Bruce, et al.
Oreilly & Associates Inc.
978-1492072942
2020

研究室
オフィスアワー
科目ナンバリング
学位授与方針との関連
関連ページ