![]() Teacher name : Komatsu Gorou
|
授業科目名
Data Science
学年
1Grade
単位数
2.00Credits
実務経験の有無
開講クォーター
semester not specified
担当教員
Komatsu Gorou
授業形態
授業で主に使用する言語
English
授業方法区分
開講キャンパス
Kioicho Campus
授業の到達目標及びテーマ
This course provides an introduction to Data Science, Econometrics, and causal inference.
Identifying cause-and-effect is of most importance in many business and academic fields, thus the causal inference are now widely used in Business, Marketing, Psychology, Economics, Public Policy, and most importantly, in writing your master thesis. In this class, we learn Statistics/Econometrics techniques to identify causality, together with some recent development in machine learning, all necessary for a modern data scientist. *It is highly recommended that students have already taken “Statistic” offered by GSIA. *The class materials and schedule are subject to change depending on students’ statistical skills and research topics. 授業の概要
Course Title: Data Science
Class Format: Lecture Content: After quickly reviewing the basic concepts in probability and statistics, we will learn about the basic toolkits in Econometrics/causal inference as well as a couple of machine learning techniques. Students are also expected to use statistical software such as Python &/or R, to apply those methodologies to real world data. Keyword: Data Science, Machine Learning, Supervised Learning, Regression Analysis, Causal Inference, Unsupervised Learning, Principal Component Analysis, Factor Analysis, Clustering, Python, R, Data Scientist Week 1—Statistics Review 1 Statistics Review (1) 2 Statistics Review (2) Week 2—Regression Analysis (1) 3 Simple Regression Model 4 Multiple Regression Analysis: Estimation Week 3—Regression Analysis (2) 5 Multiple Regression Analysis: Inference and Further Issues 6 Qualitative Regressors Week 4—Causal Inference and Program Evaluation(1) 7 Difference-in-Differences 8 Panel Data Week 5—Causal Inference and Program Evaluation (2) 9 Instrumental Variables 10 Regression Discontinuity Design, Propensity Score Matching Week 6—Unsupervised Learning 11 Principal Component Analysis, Factor Analysis 12 Clustering Week 7—Wrap-up 13 Wrap-up 授業計画
1回
1 Statistics Review (1)
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
2回
2 Statistics Review (2)
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
3回
3 The Simple Regression Model
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
4回
4 Multiple Regression Analysis: Estimation
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
5回
5 Multiple Regression Analysis: Inference and Further Issues
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
6回
6 Qualitative Regressors
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
7回目
7 Difference-in-Differences
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
8回
8 Panel Data
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
9回
9 Instrumental Variables
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
10回
10 Regression Discontinuity Design, Propensity Score Matching
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
11回
11 Principal Component Analysis, Factor Analysis
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
12回
12 Clustering
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
13回
13 Wrap-up
事前学習
Read an assignment
事後学習
Solve and submit homework quizzes
14回
事前学習
事後学習
15回
事前学習
事後学習
16回
事前学習
事後学習
17回
事前学習
事後学習
18回
事前学習
事後学習
19回
事前学習
事後学習
20回
事前学習
事後学習
21回
事前学習
事後学習
22回
事前学習
事後学習
23回目
事前学習
事後学習
24回
事前学習
事後学習
25回
事前学習
事後学習
26回
事前学習
事後学習
試験及び成績評価
Homework Quizzes: 50%
Final Project: 50% 課題(試験やレポート等)に対するフィードバック
To be provided when necessary/requested
講義で使用するテキスト(書名・著者・出版社・ISBN・備考)
To be provided
-
-
-
-
参考文献・推薦図書
Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python, 2nd ed.
Peter Bruce, et al. Oreilly & Associates Inc. 978-1492072942 2020 Introductory Econometrics: A Modern Approach (7th Edition) Wooldridge South-Western Pub. 978-1337558860 2019 研究室
4402 Kioicho Campus Building #4
オフィスアワー
Friday 12:45-13:25
科目ナンバリング
学位授与方針との関連
関連ページ
N/A
|